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| ABSTRACT

A

The Cauchy problem for various
types of second order nonlinear elliptic
equations is considered. A substitution
v=f(u in the equation leads to a
perturbed equation whose solution is
compared to an appropriate solution of
an unperturbed second order linear
elliptic equation obtained by formally
setting . /=0 . In each case a
logarithmic convexity argument is used
to show that appropriately constrained
solutions of the  original equation
(assumed to exist) are shown to differ
from a solution of the associated linear
equation in a manner depending
continuously on the parameter e¢.
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INTRODUCTION

A problem in ordinary or partial differential equations is said to
properly posed if it has a unique solution in the class under
consideration and if this solution depends continuously on the data in
some appropriate measure. Otherwise the problem is said to be
improperly posed. Although Hadamard (8) defined the question of proper
posedness at the turn of the century and demonstrated that the Cauchy
problem for the Laplace equation is improperly posed, relatively lictle
attention was given to improperly posed problems for partial
differential equations until the papers of John (9) and Pucci (16)
appeared in the 1950's. Up to that time the prevailing attitude seemed
to be that only properly posed problems were of interest in

applications.

It is realized now, however, that many problems of physical
interest are improperly posed. For example, the Dirichlet problem for a
second-order linear elliptic equation on a smooth bounded domain in RY
is properly posed. However, in many physical situations, only a portion
of the boundary may be accessible to data measurement. In such cases,
one measures additional data--usually the gradient of the unknown
function--on that portion of the boundary which is accessible. The
resulting problem is an improperly posed Cauchy problem. Pavne (1l4)
showed that this problem can be stabilized by imposing an a priori bound
on the L2--norm of the solution. (Special cases of this problem had
been considered earlier; for example, Lavrentiev (ll) showed that
imposing a pointwise bound on the solution of a Cauchy problem for the
Laplace equation is sufficient to ensure that the solution will depend
continuously upon the Cauchy data in some neighborhood of the data
surface.) Extensions of the result in (14) to the Cauchy problem for

equations of the type
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Lu = f(x, u, grad u) , . (1.1

for a uniformly elliptic second-order linear operator L are found in v
(6, 18-20). 1In each case a Holder continuous dependence result is

obtained by restricting the L2-norm of the solution.

This work investigates improperly posed Cauchy problems for some
second-order nonlinear elliptic equations which cannot be written in the

form (1.1) but which can be written as
Lv = g(x, v, grad v, Hv), (1.2)
where Hv 1is the Hessian matrix of v . Examples of such equations are

the minimal surface and capillary surface equations. The substitution

v = €eu in (1.2) leads to a perturbed equation of the form

Lu = eké(x, u, grad u, Hu) (1.2
for some positive number k . The corresponding unperturbed equation is
Lh = 0 , (l.4)

and logarithmic convexity arguments are used to derive stability
estimates for v - ¢h , where h is a solution of an appropriate Cauchy
problem for (1.4).

The question of the feasibility of approximating a solution of a
Cauchy problem for a perturbed equation by a solution of a Cauchy
problem for the corresponding unperturbed equation will be referred to
as the question of g¢ontinuous dependence on modeling in the Cauchv
problem for the perturbed equation. Adelson’'s work (1, 2) illusctrates

this concept. His results apply, for example, to show that an
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appropriately constrained solution of the Cauchy problem for the
singularly perturbed equation

ea®v - v = E(x) (1.5)
can be approximated by the solution of a Cauchy problem for
-Aw = E(x) (1.6)

which should, in some sense, be the limiting problem as ¢ tends to

Zero.

The question of existence of solutions for perturbed problems for
all values of ¢ 1in some interval (O, co) presents no difficulty in
most reasonable properly posed problems for ordinary or partial
differential equations. Hence, in such problems, one may allow ¢ to
tend to zero and prove that the solution of the perturbed equation
converges to the solution of the unperturbed equation in some

appropriate measure.

However, for improperly posed problems, for given data the solution

may fail to exist for some or all values of ¢ in the interval. One
can compensate to some extent for this difficulty by allowing for small
variations in the data--not an unreasonable thing to do since the data
usually cannot be measured exactly. This work shall not be concerned
with the complicated questions of existence but shall assume that all

solutions under consideration do indeed exist.
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2. Notation

Let D be an N-dimensional domain bounded by a closed surface C,
and let Z be that portion of C on which Cauchy data are prescribed.
The complement of I with respect to C 1is denoted X', and no data
are given on I'. Assume that the closure £ of T isa c’ta
surface for some a > 0. Since Cauchy data are given only on the
portion T of C, one cannot expect to derive estimates for continuous
dependence (on the data) on the entire domain D. In particular cne
might not expect to derive such estimates for subdomains of D whose
boundaries contain a portion of Z'. Thus a family (D,) of subdomains

of D on which to derive stability estimates is chosen as follows:

Let {f(x) = constant) define a set of (not necessarily closed)
surfaces. This set is to be chosen so that for each a ¢ (O,i] the
surface (f(x) = a) intersects D and forms a closed region D, whose
boundary consists only of points on £ and points on the surface

{(f(x) =a). We set £ =X ND and § -{f(x)-a}ﬂﬁ
Qa [+ 3 a [ 4

Assume that £(x) has continuous second derivatives in 51.

Furthermore, assume that

if B < v , then Dﬁ < Dv; (2.1)
|grad £f| 2 § > 0 in D1 ; (2.2
Af £ 0 in D, (2.3
jaf] s 62d in Dl ; (2.4

where 6§ and d are positive constants. (In Section 5, (2.3) and

(2.4) are modified somewhat.) Assume that the surfr-:es have been chosen

so that D, has positive Lebesgue measure for 0 < a < 1 but that D,

a
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has Lebesgue measure zero. For N 2 2, one can choose a raidal

harmonic function f which satisfies (2.1) - (2.4).

Throughout this paper commas are used to denote differentiation,

and the summation convention is used for repeated indices. For example,

The arithmetic-geometric mean (A-G) inequality states that, for

positive numbers a, b, and ¢

2ab5ca2+%ob

£ c"'“- 8. u.l.- S,

2 9,
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3. This section examines the minimal surface equation

2,-1/2, -01inD . (3.1)

[(1 + |Vv| 5175

On I , assume that the Cauchy data satisfy
2 2
j (v + v,iv,i) ds < ¢ (3.2)
p>

for some small positive number e. The substitution v = eu in (3.1)

yields the perturbed equation

T W

2 2
Au = €7p u’iu’ij in D , (3.3

2, -1/2

where p = (1 + 52|vu| ) Formally setting ¢ = 0 in (3.3) gives

Laplace’s equation

Ah = 0 in D. (3.4)
Setting w = u - h yields

Aw = 52p2u,iu,ju,ij in D . (3.5)

Regarding the data on Z, require, for some p < 6, that

2 -p
J (uviuui) I(uvzuvjz - u,ju,fz)nj|ds - 0(6 ) . (3.6)
pX

D LY R e ]
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Furthermore assume that

4
J W+ w, W, )ds = 0(e*TP) ' (3.7)
z

]
{
L}
[ It is shown that if u and h are appropriately constrained solutions
b
B of (3.3) and (3.4), respectively, which satisfy (3.6) and (3.7), then
! for O0<a<a<l,
N
- J (v - eh)qu - o[e(6°")'”(°‘)] (3.8)
; D,
4
\ where v 1is a smooth function of a satisfying
b
',3 v(0) =1 , v'(a) <0, u(al) - Q . (3.9)
4
A The following argument closely resembles the one used by Payne (14)
M when he computed bounds for solutions of ill-posed Cauchy problems for
. linear elliptic equations. To begin the derivation of (3.8), set, for

a ¢ [(0,1] ,
4
)
d Fl(a) = Q + (a - n) ” [w,iw,i + wAw]dx}dn , (3.10)
0 D

e f’
L)
3
N where Q is given by
"

L
' 2 b-p
[} -
: Q kOJ w ds + k1J w,iw,ids + kze , (3.1
\ z z
b. ¥
"
¥
: -7-
s
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and the ki are positive constants which will be chosen later. It is

shown that F satisfies a differential inequality of the form

2 2
. " ’ - [
R FF (F")" =2 CIFF C2F (3.12)
?
¢
; on the interval (0,a1) for explicit constants C, and C,. The
A solution of this inequality then leads to the desired bounds.
3§
" The first and second derivatives of F are
F'(a) = J [w’iw'i + waw]dxdn , (3.13)
0D
:
f
[}
» F'"(a) = J [w,iw,i + wAw]dx . (3.14)
D
Q
y
\ Integrating (3.13) by parts, one can write F(a) and F'(e) in more
: useful forms:
F'(a) = ww, . f |Vf|-lds + ww, .n, . dspdn
vi )i yi vi
A o%¥s z
n n
3
a
-JDG ww,if,idx + J J ww,inidsdn . (3.1
0z
n
Note that on S,7 the component n; of the unit normal is given bv c
f,j|vf|'1 . Using (3.15),

L f..r"\f L
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9
’7|- g
F(a) = Q + F'(n)dn = Q + {J ww,if,idx + J J ww,inidsda}dn . 3
0 ovD o'z .
n g Y
e ;
Integrating by parts above and using (2.3) and the A-G inequality, ;
t
1 2 1 2 <
F(a) = Q + {2 w |VEids + 2 J w f,inids i
ot 9s X _
n n >
1 [ ) r'l o
- = w afdx + ww, .n_ dsdo ¢dn
2 ii
YD 402
n o
1 i 2 2 2
z 5 |[VE| "w dx - vy J wds - vy [ w,iw,ids +Q (3.16)
YD z z
a R
Yy
.
for computable constants vy and vy - One can now choose the N
constants ki in Q so that ;
0
%[[ rwzdx+Q:|sF(a)s%—l-{J‘ rwdx+QJ (3.17)
D D g
a a
2 )
where r = [VE[™ . by
The inequality (3.17) enables the use of the solution of (3.12) :o f
estimate the Lz-integrals of w over the domains D, . To derive :
(3.12), we need three preliminary estimates. ")
R
N
i,
o
N
N
)
'
[
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Lemma 1: Let oy ¢ (0. 1) Then for o ¢ (0.a9)

2 4 3 2
J (Aw)“dx s ce {J ((u,qu, )7(L + € u,ju,j)]dx ,
D D
a 1

+ J (u,iu,1)2| (u'lu'jl - u,ju,lz)nj|ds}
%

for an explicit constant c¢ independent of ¢ and a .

{ Proof: Define the function w on Dy by

1 in D_UZ,

w(X) = B -
LE(X) 40D - uz)
l-a 1 a a

Note that w = 0 on §; and that |w] =1 in D;. Since
f e CZ(BI) , the first and second derivatives of w are uniformly

bounded on Dl'

Now consider




< J wzpz[(t.z,.iu,i)zu,‘jku,Jk (3.18)
D

1
o d
+ A(u,iu,i)u,ku,lu,jku,jl]dx .

\
N
i The second inequality above holds since u'ku'zu'jku'jl =0
'
ﬁ By Schwarz’s inequality and the A-G inequality,

2 2 4
‘; (u’ju'lu'jl) < |Vu] u,ku,zu,jku,“Z < |Vu| u'jﬁu'j.ﬁ
b)
]
)
9,
; Therefore, from (3.18),
1]
)
{
) 2 4 2 2 2.2 4 2, ..
3 J(a) SJ wp (u,iu.i) [u'jlu'j2(1+€ [Vu| ™) - ¢ (u,ju,zu,jz) Tdx
] Dl
: 2 2 2 2 2 2
p) + 4 w p (u’iu'i)[u'ku'lu‘jku'jl(1+‘ [Pu[®) - e (u'ju'iu'ji) ldx
\ Dy
L]
2 2 2

P -J w (u.iu,i) {u.ﬂu.ji - (aw) }dx
' Dl
»
[}
[
! 2
e' - o,
, + 4J w (u'iu‘i) {u'ku’lu'jku'jl Au(u.ju,lu,jz)}dx . . N
S D1
n
:u
. )
'y
ﬁ -11-
.l
]
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To eliminate the second-order terms appearing in the bound for
J(a), integrate the first term on the right side of (3.19) by parts.
First note that .
wz(u u )2u. u dx = wz(u u )2u u n,ds ’
ii ,i ’j2 ’j£ li li IJ' ,J£ 2
D1 Zi
- w2(u u )2u (Au), ., dx - 2 ww, ,(u,.u )2u u dx
,i ’i ’j )j 12 1 i ’ i )j yjz
D D
-4 J w (u u,i)(u .U, ku’jzu'kl)dx . (3.20)
Dy
Integrate the first volume integral on the right side of (3.20) by parts
to obtain
2 2 2 2
- J' w (uliuvi) u)j(Au))jdx - J w (u’iu'l) u, Ju'.z,Q J
Dy %
2 2 2 2
+J w (Au) (u,iu,i) dx + 2 J w,j(u,iu,i) u.ju./”dx
Dy Dy
+ 4 wz(u u )2u u, u u dx (3.20) *
S S & "ITkTTIkTT L2 ) e
D
Y
-12-
R A e RSN WS M Ot Mt NI WM DO M0 MACRIM = s> YA A A A R N 1 RO Y "ol ey )



Combining (3.20) and (3.21) yields

Q
( i ) dx = wz(u u )2[u u,.,n, - u,,,n.]d
. S e TR VAl D rptrgl Mgttty 7 Mgt gty ies
Dl 21
2 2 2 2
+ J w (Au) (u,iu,i) dx + 2 J ww,j(u,iu,i) u,zzu,jdx
Dy Dy
+ 4 wz(u )u .u,,u, .. u dx - 2 ww, (u,.u, )2u .u dx
1 J 'k ik ree AR | joriaT
- 4 wz(u u,.)(u )dx 3.22)
,i ,i 'quku,jk . ( . .
Dy
Returning to (3.19),
2.4 2 2 2.2 4 2
J wp (u, u, ) u 5% 2(1+e [va| 7)™ - € (u, TPy g) lax
Dy
2 2 2 2,
+ 4 J w p (u u )[u,ku,zu,k£(1+e [Vu| ™) - € (u Ju,zu.Jz) idx
. D

1

2 2
- J w (u,iu, Y (u, Ju,Jan - u,ju,zlnj)ds
%

-13-
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L an an JEr

+ 2 J w(u,iu,i)z(w,ju,ju,lz - w,zu,ju,jz)dx . (3.23)
D

1

Using the A-G inequality, the absolute value of the volume integral
on the right side of (3.23) is bounded above by

3 2 2 1 2 2 2
k J (u,iu,i) (1+€" |Vu| " )dx + 2 J w p (u,iu.i) u,jzu,jzdx (3.24)
D D

1 1

for a computable constant k., Thus from (3.18), (3.19), (3.23), and
(3.24),

1 1 22 2

2 J(a) =< 2 J w p [(u,iu,i) u'jku'jk + 4(“'1“'i)“'k“'zu’jk“’jz]dx
D
1

A

1 2 2 2
2 J w p (“’i“'i) u,jku,jkdx
Dy

+

22
4 J wp (u,iu,i)u,ku,zu,jku,jzdx
Dy

IA
—
™
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~
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[

e
[
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+ kJ (u,iu.1)3(1 + 27| %yax .
D

1

The proof of Lemma 1 is now complete.

Before deriving the next two required estimates, it is convenient

at this point to place a constraint on the function u. Using the

result of Lemma 1 and the definition of Q as a guide, require that

)]dx = 0(e™?)

J [(u.iu.i)3(1 + ezu.ju.j
D

1

(3.25)

This constraint is used in the proofs of the next two lemmas. which are

understood to be valid on the interval (O, al).

Lemma 2: If F(a) | iv then

|F'| < F' + K F

for an ex i 0 n 1=

Proof: From (3.13) it is immediate that

|[F'| < F' + 2 J wAwdxdn
0“D
n
By the A-G inequality,
-15-
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2

J:J wAwdxdn
D
n

so that (3.17) and Lemma 1 yield

< JQJ wzdxdq + Ja (Aw)zdxdn ,
0D D
n

n

IF'(a)| < F'(a) + 26 2F(a) + 0(e*P)

This completes the proof of Lemma 2.

Lemma 3: If F(a) {s given by (3.10), then

(3.28)

-1 2 ,
J [w)iwli - zr (wpif.i) ]dx 2> ‘KZF - K3F ,
D

x
for explicit constants KZ and &3.

Proof: To establish this lemma, consider the identity (also used in
Payne (14))

-1 21 -1
2 J (a-n)x f,kw,kA,kAwdx - Jaf [Zf,kw.kw,ini - f,ini[Vw| Jr dsdn
D 074D

a

-1 - 2
J (0"1){2“'}} DigWeg¥ey - (Eir 1)'2'vw' }dx . (3.29)
D

a

The integrals over Sq may be rewritten as

.

-aw e » -‘-*-J"--'l‘-*n-' '.-‘.-[-‘.-'.'-




[Zf w, W, n, - f,ini|Vw|2}r'1dsdn
S

'k 'k 'L
n
b
-J [Z(E,iw,i)zr'l - |Vw|2}dx . (3.30)
¢ D
a
Substituting (3.30) into (3.29) and using the A-G inequality,
w, . W,, - 2r'1(w £ )2 dx = - k w,.w,.ds
'1 li li li - 3 ’i yi
D z
o
- kh [ (a-q)w,iw,idx - kS J (a-n)f,kw,kAwdx . (3.2
D D
[+ 4 x
(The k; in this proof are all explicit positive constants.) Clearlv
- k3 I w,iw,ids > - k6F . (3.3
z
Note that
J (a-n)w,iw,idx - J w,iw,idxdn , (3.33
¢ Da 0 Dn

and the proofs of Lemmas 1 and 2 yield the conclusion that

-17-
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§

- kh J (a-q)w,iw,idx z - k7F - k8F . (3.34)

D
a Q
v f
H
Finally, .
J (a-n)f, w, Awdxdn| = ' Ja £, w,kAwdxdn
D D .
a n {
k w,,w, dxdn + k (Aw)zd d
S Kg kST T X0 xén
)] 0'D
n n

]

< kllF' + k12F . (3.35)

Combining (3.32), (3.34), and (3.35), one sees that Lemma 3 holds. i
We can now proceed to derive the inequality (3.12). Using (3.17). _!
;l
2 \,
FF" - (F')2 > {[l J rwzdx‘[ J w,.w,.dx} - [ J ww,,f,,dx] } 4
2 i'i i1 .
D D D ;
a a a A
.
+ F wAwdx - 2|F'| ww, .n.dsdn (3,380 ’
ii .

D o'z '
a n y
¥
¢ o

l' C. .’I I

-18-
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In arriving at (3.36), we have dropped a number of nonnegative terms on

the right. On account of (3.25), one can find a constant k;, so that

J wAwdx
D

a

< k12F ' (3.37)

and the A-G inequality gives a computable constant k;3 such that

< k,.F . (3.38)

13

J ww,inidsdn
oz

”

For the term in braces in (3.36), by the Schwarz inequality, Lemma

3, (3.17), and Lemma 2,

I\
—_—
o
e
»
——
—
o
X
[ bl
)
(o}
=%
>
N
o
La]
1
=
[ 8
L]
[ amtd
[oN
®
H_J

v

’ 2 g (XA
- 2K,FF' - 2(KKy + K )F" . (3.20




Applying Lemma 2 now to the term |F'| in (3.36) gives (3.12) for

explicit constants C, and C,.

It is well-known (see, e.g., Levine (12)) that a solution F of
(3.12) which vanishes for one value of a in the interval [O,al] must
vanish identically. Thus, assume without loss that F(a) > 0 for all
a in [O, al]. Set

-C2/C§
g = exp(-cla), G(o) = log F(a) * o , (3.40)
to see that
" -2 2 " ' ' 2
G"(g) = (ClFa) [C2F + FF" + ClFF - (F')"]1 =20 . (3.41)

Hence G 1is a convex function of o, so that by Jensen’'s inequality,

2 g L-o
-C,/C -C,/C;|1l-0 l-o0
Fla)o 2 1l g [F(al)al 2 1] 1[?(0)] 1 (3.42)

where
9, = exp(-Clal) . (3.43
Note that F(0) = Q, which is 0(64-p) by assumptien.

As has been noted in earlier papers (John (10), Pucci (17)). in
order to make F(a) small for 0 < a < aj, it does not suffice to
make F(0) small. One must ensure that F(al) is not excessivelv
large. On account of (3.17), it is necessary to constrain the Lz-norms

of u and h on Dl' Thus, assume that

-20-
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I wldx = 0¢e %y, [ h2dx = 0(e 2y . (3.44)
D D

1 1

One can then compute a constant N; independent of € so that

’ 2
ks -C,/C
) 2771 2 -2 -
4

. F(al)al < Nle . (3.45)
i
%

L

e Insertion of (3.45) into (3.42) gives

. (2(e-1)+(4-p) (a-0,)]/1-0)

? F(a) = 0]¢ . (3.46)
p

" From (3.17), we now obtain the following.

)

3
’: Theorem 1;: If u and h are solutions of (3.3) and (3.4)
;f respectively, which satisfy the boundary conditions (3.6) and (3.7} as
" well as the constraints (3.25) and (3.44), then the solution v of

ﬁ (3.1) satisfies the continuous dependence inequality

y

W

o J (v - eh)zdx - O[e(é-p)u(a)] for 0 < a < o

&

5. DQ

o

it where via) = (o - 01)/(1 - al)
:‘ We close this section with some additional remarks. The reason for
¢

« deriving (3.12) only on (0, a@7) with a7 < 1 1is that the derivatives
) g y 1 1

" of the function w in the proof of Lemma 1 become unbounded as «

R ¢ approaches 1. By restricting attention to an interval (0, aj;) with
; a; < aj, one can derive bounds for the Dirichlet integral of v-¢h as
i

R . follows:

‘e

L)

¥

:‘ ‘21.'

)

"

1}

0, : - Y L D e Y O S T Sy o W S A e R SRy
Lt a2 wlt A S ANAROASASS N AL A" AN e L HhORY, 5 ! W X0 MY M 0 N M L) .



' .‘-

P, AR

IR GRS 2 gt gl e Sateaa g P Eth b tAgt i altad gk p gt o iog i s i ethag A" gty gt 'S0 Lathag ta- g bep gt

i D, UZ
1 in 8 5
ag - f(x) ’
Let pu(x) = -;;—T—E—— in Da3 - (Dﬂ U Eﬁ)
where 8 < a, and ay is a fixed number between a, and aj. Then

[ (w-h), (u-h), d sJ piu - ), (u - b, dx
D D

B aq

- J pz(u - h)(u - h),in ds - J (u - h)(u - h).i(yz),idx
z D

%3 <3

3 J s2(u - h)(u - h),  dx
D

&3

(3,47
- O(eh-p) + % J (u - h)zA(#z)dx - J uz(u - h)a(u - h,dx .
D D

a

3 %3

Using Theorem 1, one can show that the first volume integral on the

(6-p)ev(ay)-2
right side of (3.47) is Ofe . Using the A-G inequalitv.

Lemma 1, and Theorem 1, we can show that the second volume integral on

6-p)evia,)-2
the right side of (3.47) is also O]e . Thus,

(6-piv(a,)
J |9(v - eh)|2dx - O[e 3 ]
D

B

for B < a,.
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4. In this section, we consider the capillary surface equation

(1 + |9v| 52 v,y =ev in D,

(

4.1)

where ¢ 1is a positive constant. On the surface 2, assume that the

Cauchy data satisfy

(v2 + |Vv|2)ds =< 62

z

for some small positive number . The substitution v = eu in (

vields the perturbed equation

2 1

2
AU - cu = € p u,iu,.u,. + ¢c[= - 1|u

where

p = (1 + e2vu) 2y /2

Since

1o oy o ?,

compare u to a function h satisfying
Ah = ch in D
Setting w = u - h,

2

2
AW - CW = € p U, u, Lu, llcu

+
I
1

=~
ro
~

4.1

(4.3
(4.

e
"

Under appropriate constraints on u and h, we obtain a continuous

dependence inequality for v - ¢h = ¢(u - h) which is similar to

thas

of the previous section. 1In order to choose appropriate constraints as

223
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well as to prove analogs of Lemmas 2 and 3 of Section 3, we need the

following analog of Lemma 1.

Lemma 4; let o€ (0.1)., Then there are constants l and 22
ind dent so or _eac 0.1
[ (Aw)zdx < £1J wzdx
D D
a a

4 2
+ 225 { J (u,iu,i) |u,ju,j£nz - u, ' 5 ,zgnJ|ds
z

+ [ {(u .u, . ) (1 + ¢ |Vu| ) +u (u u ) (l + € |Vu|2)2
D
+ |u|p-1(u u,.)|dx
i1 ’
Proof: From (4.5) and the A-G inequality
2 2 4 2 4 4 4 2 L
(Aw) "< clw + cze u |Vu]  + c3e P (u,iu,ju,ij) (4,50

for computable constants €1, o, and cy. As in section 3, consider

4 2 o
J(a) = L p (“'iu'j“'ij) dx (4.7)

a

224 -
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§
3
!

and note that

J(a) s J wzpa(u,iu,i)zu,jku,jkdx
D

2

2 2 2
< J w p [(u)uuy i) u,jku'jk + a(ul iu'i)u’ku'zu,jku,jz}dx
D,

2

< J wzph(u,.u,.)z[u,jlu,jz(l + 52|Vu|2) - ea(u’ju'ﬂu'jl)szx
D

2 2 . 2 2 2 20
+ &J w p (u.iu.i)[(u,ku,zu,jku.ﬂ)(l + € ]Tu]7) - ¢ (u,ju,iu.j{.‘ L
D

1

where w(x) 1is defined as in section 3. As in the previous section,

note that

+ J wz(Au)z(u,iu,i)zdx + 2 j w(u,iu,i) (W, .4, ,.U, . - w..u,.u,, . d&x
D

1 >

-25-
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2 .
+ 4 J w (u'iu’i)u’ju'ku’jku'lldx
Dy

<-4 [ wz(u,iu,i)(u,ju,ku,jzu,kl)dx . (4.9)
D

1

Use the equation (4.3) to write

2 2, 22 2
- J w (“’i“'i) (e"p “’j“’z“’jz) dx
D

1

2
- - J w (u,.u..)z[Au - c 1 u] dx
i™i P
Dy
2 2 2 2 2 222
- - I w (u,iu,i) (Au)dx - ¢ J w (u,iu,i) p udx
Dy Dy
+ 2¢ J wz(u,iu,i)zuAup'ldx . (4.10)
Dy

Combining (4.9) and (4.10),

o

2 2 4 2 2.2 4
J w (u,iu,i) p {u'jzu'jl(l + € |Vu] )" - ¢ (u,ju,zu,jz
D

1

-26-
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2 2
- J w (u,iu,i) [u,j\.'.,jzn/2 - u,ju,zznj]ds
%)

2
+ 2 w(u,.u,.) [w,.u,,u,, - w,,u,.u,,, ]dx
' JD i~ joraLTy 2773752
1

2 2 _
+ 4 J w (“’1“ u, “'k“'jk“'zzdx -4 J w (u,iu, ) (u, Ju,ku iy U.y o)dx
D, D,

- c2 J wz(d,iu,i)zp-zuzdx + 2¢ J wz(u,iu,i)zu(Au)p‘ldx .
Dl Dl (4.11)

Returning to (4.8), we use (4.3) to write

2 2 -2 2 2
4 J w p (u,iu.i)ly.ku,zu,jku.jzp - € (“'j“'z“'jz) Jdx
Dy

2
= 4 J v (u, u )(u'ku’lu'jku’jﬂ)dx
D,

.........................



Adding (4.11) to (4.12),

A= J wz(u,iu,i)z[u,ju,jznz - u,ju,lznj]ds
%

2
+ 2 J w(u,iu,i) [w'ju’llu’j - w,zu,ju,jz]dx
D

1
k)
K
[}
)

2 2 2 =22
§ -
c J w (u,iu,i) p udx

1 D
i + 2¢ J wz(u,iu,i)zu(Au)p-ldx

Dy

2 -1
+ 4¢ w (u,iu,i)p u dx . (4.13)
Dy
Using the A-G inequality, one can find a constant k so that
A=< wz(u u )2[u u,,,n, - u,.u,,,n, ]ds
A 'i Yi ’J' ljz 2 YJ’ ’lzj
%
+ k J (u,iu,i)3(l + 62|Vu|2)dx

[l Dl

.08.-
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1 2 2 2 3
+3 I w p (u,iu.i) u.”u.jzdx
Dl :
- y
+ kJ wz(u, u, )2u2(1 + ¢2]Vu|2)2dx
4 i™i
Dy
2 -1
+ 4c¢ w (u,iu,i)p u dx . (4.14)
D
We can now conclude that
'.
2 2 '
§
J(a) = 2 w (u,.u,i) (u,ju,.znl u .u,zznj)ds :
%
+J (“'i“'i>3<1 + 2 jvuHyax .
Dy
+ J u2(u,iu,i)2(l + e2,|Vu|2)2dx 1
Dl A
;
+ [u[p'l(u u,,)dx (4130
'i ,i ] \ . .
Dy
s A
..
]
) for an explicit constant £ . Thus Lemma 4 holds. \
(]
]
-29.
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Having obtained an estimate for

[ (aw)2ax |
D

[ Y

one can argue in a manner similar to that of the preceding section. For

a € [0,1] set

r“
F(a) = Q + J (a-q){ J [w,iw,i + wAw]dx}dn (4.16)
D

0
n

where Q 1is given by

2 4-p
Q ko J wds + kl J w,iw,ids + kze (4.17)
p =

with 2 < p < 6. The k; are positive constants chosen so that (3.17)

holds. Assume that
J (Wt + w, W, )ds = 0(e* Py | (4.18)
=z

and also impose the constraint




2
J (u,;u,9) Iu.ju,jznz - u,ju.zznj|ds
z

]
+ J [(u,iu,i)3(1 + 52|Vu|2) + u2(u,iu,i)2(1 + 62|Vu|2)
D

1

+ Julp™M(u, u, ) ldx = 0(e7P)

2

(4.19)

We now state the remaining estimates, which are understood to hold on

the interval (O, aj). The proofs are similar to those of the previous

section.

Lemma 5: If F(a) is given by (4.16), then

|F'| < F' + K.F

1

or a computab tant Kl‘

Lemma 6: If F(a) is given by (4.16), then

for explicit constants Ko__and K, (recall that

(4.20)

r = |VE|2.)

One may now conclude as in the last section that on the interval
(0, 01).
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for explicit constants C; and C,. Assuming that

J wldx = 0¢e™ %y J hldx = 0(e?) | (4.22)
D D
we have

eorem 2: an e o) (o) 4.3) and (4.4

respectively, which satisfy (4.18), (4.19), and (4.22), then for
0<a<a1

J (v - eh)2dx = 0(e7(@y
D

a

with <v(a) = (6 - p)(o - 9)/(1 - 9), 0 = exp(-Cia) , and
01 - exp(-Clal)

As in section 3, one can find a continuous dependence inequality
for the Dirichlet integral of v - e¢h. Introduce the function u as in

the last section with g < a, and a fixed number dy between a,

r'4

and ay . Then

J (u-h),i(u-h),idx < J n 2(u-h),i(u-h).idx
D D

B a,

- J yz(u-h)(u-h),inids - J (u-h)(u-h),i(pz),idx
z D

%3 @3
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> aco

; J 42 (u-h)A(u-h)dx
D

a

3 g

]
‘ - 0(e* Py 4 % J (u-h)2a(u?)dx o
D

%3

; J w2 (u-h)A(u-h)dx . (4.23)
D

%3

Using the A-G inequality and the estimates of this section, we conclude

that !

J (V - Eh):i(v - éh),idx - O[E‘Y(a3)]
D

B J

with <v(a) given as in Theorem 2.
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5. 1In this section, we examine a general second-order nonlinear

elliptic equation of the form
ij .
(a ™ (x, v(x))v,i),j - g(x, v, grad v) in D . (5.1)

Assume that g(x, p, &) = 0(|p| + |€]) for x € D, P ¢ R, and

£ ¢ RY.  Also assume that the al] are ¢! Ffunctions in the D x R

with all = AJl and that for 1 <i,j,k <N
the functions alj(x,p) and their first derivatives
with respect to the variables X, are uniformly (5.2)

Lipschitz continuous in DxR.

To ensure that equation (5.1) is uniformly elliptic, we require that

there be positive constants a; and aj so that
2 ij 2 .

for each x ¢ D, peR, and £ ¢ RN. We use the notation

b (x) = ald(x,vx)) (5.4)
for a fixed solution v of (5.1) to be considered here. Thus,

ij - ij ij

(b77), (%) = (a™), (x,v(x)) + (a ),p(x,V(X))v,k. (5.5)

Consider the Cauchy problem for (5.1) with v and grad v
measured on Z. The continuous dependence estimate derived for v is

less sharp than those of the previous sections.

As in the preceding sections, assume that

-34-
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(v2 + v,iv,i)ds < €2 (5.6)

z

for some small positive number ¢. Making the formal substitution

v = ¢u leads to the following perturbed equation for a function u:

aij(x,eu)u,ij + (aij),j(x,eu)u,i + e(aij),p(x,eu)u,iu,j

= 0(e)(Jul + [Vul) . (5.7)
Compare u to a solution h of the linear equation
ij _
(A (X)h,i).j 0 (5.8)

where AlJ(x) = ali(x, 0). Subtracting (5.8) from (5.7,
@ eow. ).+ e - a0,

ij ) ij ij
+ [(a ),j(x,eu) (a ),J.(x,O)]u,i + ¢e(a >,pu,iu,j

~ 0Ce)(Ju| + [Vu|) , (5.9)

where w = u - h. Setting Lw = (Aijw,i) , note that L 1is a

']

uniformly elliptic operator in D . To choose the domains D on which
o4

to obtain L2 estimates for w, replace the conditions (2.3) and (2.a»

on the auxilliary function £ by

LE <0 , ILE| = 6%d (5.10)
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PO RS0

where §

and d are positive constants.

To find appropriate constraints under which one can derive L2

bounds for w, we need to examine the L2 integral of Lw. From
(5.9),
2 2.2
(Lw)” < re [u u’iju’ij +u U, Uy +
ij ij 2 2
(a ).p<a )'p(“'}z“'z) +ul+u, .y, (5.1D)

for an explicit constant r. One can estimate

J (Lw)zdx
D

a

in terms of data and volume integrals involving only u and its firsc:

derivatives by means of

Lemma 7: lLet ale(Q, 1), Then for a (0, a1)

J (Lw) 2ax < k¢2{ J uzlu.ibjk[“k % "y Ea(- By
5 5 i k) J

a

. (plk jk
(b ),J.u,ku,ini + (b )'iu'iu'jnklds + [u
“D

1

+ (1 + e]u|)2(u2u u + (u,.u )2) + (u,.,u, . )(1 + uz)
D R | i i

2 2,2 ij 1] 2 2 2 R - .
+ e u (U + u,iu,i) + a}ga}g(u,iu,i) + ¢ u u,ju,,),dx} (S 1LY
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for an explicit constant k _independent of ¢ and o, N,

Proof: Using the cutoff function w of the last two sections and the 'ﬂ

ellipticity condition (5.3), g

2 1 2§k o
uu,,.u,,.dx £ — wzu bd u,..4,., dx . (5.13; ?~
ij ik

D D

[AENTALARY
X

Integration by parts gives

LN ]

e

Dl o L

.

R

2 2. jk 2 2.k
[ wu'b u'iju'ikdx J w ub u,iju,inkds
D =

1 1

..-,,
N
) Yy

P

"k ij

-2 J ww uzbjku,..u,.dx -2 [ wzuu, bjku,..u,.dx .
ij7'i k i
D]. Dl L™,

) 2 2,k P )
[ wu (b u'ij)’ku’idx . (5.13) <
D

1 N
S

"‘
P

Rewrite the boundary term in (5.14) as

n-'i;_

o'

W
[V }{f

2 2. jk
[ wub u,iju,inkds
z

1 b}
2.2 ikl 3 8 oS
J wiuu, b [“k ax. i ax ] u.yds o
) 1
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2 2 2.2 ik .
+ J wuu, n.g ds - J wu u,ini(b ),ju,kds . (5.1%
z

1 %

R

Since

R
axi i axk
is a tangential derivative on Z, the three terms on the right side of

(5.15) involve only GCauchy data.

Examine now the volume integrals on the right side of (5.14).

Using the A-G inequality and (5.3),

1]

-2 [ ww, uzbjku,..u,.dx -2 J wzuu bjku, .u, .dx )
k i i
Dy Dy

Kl J bjkbjk[(u,iu,i)u2 + (u,iu,i)z]dx , (5.16) :
D

1




where 6 1is a positive constant which we may choose to be as small as v
we like and Ky is a computable constant depending on §. For the last »

integral on the right side of (5.14), note that "

2 2, 3k 2 2, 3k
- J wu (b ’ij)'ku'idx - J wu (b u'j)’kiu'idx \
D D

1 1 N

2 2 jk - .
+ J wu [(b )'iu'j]'ku’idx . (5.17) o
D

1

L

. g

"
rE)

The first integral on the right Eide of (5.17) can be written as

e

.
SN
o

(SRR

2 2 ik 2 2
- J wu (b u,j),kiu,idx - - J wu u,ig(x,v,grad v)nids
D z

1 1

~y
-

>
-

(]

+ J w2u2(Au)g(x,v,grad v)dx
D

1

I"-"".

W
—
(€]
—
M

+ J [(wzuz),iu.i]g(x,v,grad v)dx (
D

~
Y
1 Y

’ where we have integrated by parts and used (5.1). Using the A-G
inequality on the right side of (5.18),
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) 1 G N - N 4 Ly v € at . 2%, at [y ’ v 1 [ ' . . Ta Y e gt NG

) jk . 2 2
J u (b j)'kiu 1dx < w u g(x,v,grad v)u,inids
D z

1 1

+ 6 J uzuzbjku,iju,ikdx + 0(1) J (u,iu,i)(u,ju,j + uz)dx
D

1 D,

+ 0(62) J uz(u2 + u,ju,J)dx . (5.19)
Dy

Integrating the second integral on the right side of (5.17) by parts,

Jk - 2 2 ik
J [(b i ’j]’ku idx J wu (b ),iu,iu,jnkds
Dy %

jk 2 2,k
- J (b ), U, Y j - J (w ),ku (b ),iu,iu,jdx
Dy Dy

2 jk
-2 [ w uu.iu,ju,k(b ),idx . (5.20)
Dy
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Using the A-G inequality and (5.3),

) jk 2 2 Jk
J w u (b )’iu’ik ,jdx <$§ u'b lJu,ikdx
D D

1 1
2,.jk jk
+ K, J W2 (v, pu, pax (5.21)
By
where K, is a computable constant depending on § . Another use of

the A-G inequality gives

) [ (wz),kuz(bjk),iu,iu,jdx < K, J (kaka)(u u )
D D

1 3

+ K, I w?(u, e (5.22)
D

1

for computable constants Ki and K,. Finally, use the A-G inequality

to bound the last integral in (5.20) by

2, ik jk 2 P
K5 J u (b,?b,i)(u,lu,z)dx + K6 J (u,iu,i) dx , (5.23)
D

1 Dy

for computable constants Kg and K.
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Combining (5.13) through (5.23), we find that for 0 < a < @y,

2 2 22 jk a_ )
J u u’iju'ijdx < K7e { J wu [u,ib [nk .~ N 5;;]u'j (
i
Da 21

; (bjk),ju, u, n, + (bjk),iu,iu,jnk]ds

2, 2 2 22, 2
+ J [((L + €fu]) " (u u,iu,i + (u,iu,i) Y + eTuT (T o+ u,iu,i)
D

1

2, jk_jk, 2
+ € (a,pa,p)u u,zu,z]dx}

for an explicit constant K7. This, combined with (5.11), gives the

result of Lemma 7.

Now impose the constraint that the term in braces in the statement

of Lemma 7 is O(e-q) for some q < 4. Thus,

J (Lw) 2dx = 0¢e2™ Yy . (5.24)
D

a
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We proceed to derive a differential inequality for the functional

Fla) = Q + (a-n){ J [wLw + Aijw.iw,jldx}dn (5.25)
D

0
n

where Q 1is given by

2 2-q
Q= ko J w ds + k1 J w,iw,ids + kze . (5.26)
z z

As in section 3, one can choose the constants k: in (5.26) so that an

i
analog of (3.17) holds, i.e.,
%[J rw?'dx+Q] < F(a) = d‘gl [J reldx +Q] (5.27)
D D
a a
where r = Aijf,if,j. Assuming that
J W+ W, W, )ds = 0(e2"Yy (5.28)
=

we are prepared to state the remaining estimates, which are understood
to hold on the interval (O, al). Here, the proofs are very similar to
those found in Payne (14).
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Lemma 8: If F(a) i{s given by (5.25), then

IF'| s F* + K F (5.29) -
for a computable constant K,. (
Lemma 9: If F(a) 1is giv the

ij ) -1..1j 2 ) .
[ A w,iw,jdx 2 J r “[A w’if’j] dx = KZF K3F
D D

a a

for computable constants K2 and K3.

One may now conclude as in section 2.1, that on the interval
(0' al) ’

FF" - (F')2 z - ClFF' - C2F2

for explicit constants C; and C,. Assuming that

J uldx = O(e'z) , J hldx = O(e'z) , (5.30)
Dy Dy
we have
Theorem 3: If w and h uti 5.7) and (5.8) \
respectively, which satisfy (5.24), (5,28), and (5.30), then for
O<a,gl ¢
AR
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[ (v - eh)2dx = 0(e¥(?))
D

a

with (@) = (4 - @ (o - 9)/(1 - ¢}), o = exp(-Cja), and

o, = exp(-C

1 1910

As in the other sections of this chapter, one can find a continuous
dependence inequality for the Dirichlet integral of v - ¢h. Introduce
the function u as in section 3 with S8 < a and a a fixed number

2 3

between a, and a - Then

2 ij
a, J (u-h),i(u-h),idx < J m Ale,iw,jdx
D D

B a,

*3
2. ,1j,.2 .
t2 I v (A (u )yl ydx (5.31)
DC!
3
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Use the A-G inequality and the estimates of this section to conclude

that

7(ay)
(v - ¢h),.(v - €h),.dx = o]e
D i i

B
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6. Concluding Remarks )
The arguments in this work do not yield continuous dependence
. .
results if p = 6 1in the constraints (3.25) and (4.19), or q = 4 in :
(5.24). Such constraints would be desirable since they would not impose :
\
any apriori "smallness" conditions on volume integrals of the solutions \
or their derivatives. It is not clear, however, that continuous ¢
dependence results could be obtained from such constraints. ;
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assistance in the preparation of this work and the thesis from which it "
is derived. M
A
;
N]
r
(
a
¥ ,.
t
A
-
"
¥
5
'47' '1
Iy
A

Uy 8% Wy &
RO S



(1]

(2]

(10]

(11]

(12]

. s
O GINA RIS A Wy

fLop- g ] AP - o PR R » t L Ml - a2 4 B RN WA T APU WA L) * \J t v ¥ " iV i Dot E .9 4 AN

REFERENCES

L. E. Adelson, Singular perturbation of improperly posed problems,
SIAM J. Math. Anal., &4 (1973), pp. 344-366. J

L. E. Adelson, Singular perturbation of an improperly posed Cauchy
problem, SIAM J. Math. Anal., 5(1974), pp. 417-424

K. Ames, Comparison results for related properly and improperly
posed Cauchy problems for second-order operator equations, J. Diff.
Eq., 44 (1982), pp. 383-399

K. Ames, On the comparison of solutions of related properly and
improperly posed Cauchy problems for first-order operator
equations, SIAM J. Math. Anal., 13 (1982), pp. 594-606.

A. Bennett, Continuous dependemce on modeling in the Cauchy problem
for second-order nonlinear partial differential equations, Doctoral
thesis, Cornell University, Ithaca, N.Y., 1986.

J. Conlan and G. N. Trytten, Pointwise bounds in the Cauchy problem
for elliptic systems of partial differential equations, Arch.
Rational Mech. Anal., 22 (1966), pp. 143-152.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential
Equations of Second Order, Springer-Verlag, Berlin, 1983

J. Hadamard, Lecures on Cauchy’'s problem in Linear Partial
Differential Equations, Yale University Press, New Haven, 1983

F. John, Numerical solution of the heat equation for preceding
time, Ann. Mat. Pure Appl., 40 (1955), pp. 129-142.

F. John, Continuous dependence on the data for solutions of partial
differential equations with a prescribed bound, Comm. Pure Appl.
Math., 13 (1960), pp. 551-585

M. M. Lanrentiev, On the Cauchy problem for the Laplace equation.
Ivest. Akad. Nauk. SSSR., 20 (1956), pp. 819-842

H. Levine, Logarithmic convexity and the Cauchy problem for some
abstract second order differential inequalities, J. Diff. Eq., §
(1970), pp. 34-55.

L. E. Payne, Bounds in the Cauchy problem for the Laplace equation.
Arch. Rational Mech. Anal., 5 (1960), pp. 35-45.

L. E. Payne, On a priori bounds in the Cauchy problem for elliptic
equations, SIAM J. Math. Anal., 1 (1970), pp. 82-89

-48-
W s TR e W N R T G A R Y U W LW
.tf‘nt-. I o Mo o, A AR A SR A Dy Wy , U W Ch 2 Y A )



[15]

L. E. Payne, Improperly Posed Problems in Partial Differential
Equations, Regional Conference Series in Applied Mathematics, 22
(1974).

C. Pucci, Sur problemi di Cauchy non “"ben poste." Rend. Accad. Naz.
Lincei, 18 (1955), pp. 473-477.

C. Pucci, Discussione del problema di Cauchy per le equazione di
tipo ellitico, Ann. Mat. Pura Appl., 46 (1958), pp. 131-153

P. W. Schaefer, On the Cauchy problem for an elliptic system, Arch.
Rational Mech. Anal., 20 (1965), pp. 660-673

P. W. Schaefer, On uniqueness, stability and pointwise estimates in
the Cauchy problem for coupled elliptic systems, Quart. Appl.
Math., 31 (1973), pp. 321-328.

P. W. Schaefer, A priori bounds in the Cauchy problem for coupled
elliptic systems, Applicable Analysis, 4 (1974), pp. 207-221.

G. N. Toytten, Pointwise bounds for solutions in the Cauchy problem

for elliptic equations, Arch. Rational Mech. Anal., 13 (1963), pp.
222-244,

-49.




T -

-

T

P

N
~
~
5
U
"

RN A ARSI AR AN N YUY W US UY VI VAN RR N P

CNA PROFESSIONAL PAPER INDEX!

PP 4072
Laird, Robbin F. The French Strategic Dilemma. 22 pp..
Nov 1984

PP 413
Mizrahi, Maurice M. Can Authoritative Studies Be Trusted?
2 pp..Jun 1984

PP 116
Jondrow, James M., and Levy, Robert A. The Displacement of
Local Spending for Pollution Control by Federal Construction
Grants, 6 pp., Jun 1984 (Reprinted from American Economic
Review, May 1984)

PP 418
Reslock, Patricia A. The Care and Feeding of Magnetiwc Tapes,
7 pp.,Jul 1984

PP 420
Weiss, Kenneth G. The War for the Falklands: A Chronology,
32pp., Aug 1982

PP 422
Quester, Aline, and Marcus, Alan. An Evaluation of The
Effectiveness of Classroom and On the Job Training, 35 pp..
Dec 1984. (Presented at the Symposium on Training
Effectiveness, NATO Defense Research Group, Brussels,
7-9 January 1985)

PP 423
Dismukes, N. Bradford, and Weiss, Kenneth G. MARE
MOSSO: The Mediterranean Theater. 26 pp., Nov 1984,
(Presented at the Seapower Conference, Washington, D.C.,
26-27 November 1984

PP 424
Berg, Dr. Robert M., The CNA Ordnance Programming Mode!
and Methodology, 27 pp., Oct 1984. (Presented at the ORSA-
MAS/MDRS Symposium, Washington, Aug 1984)

PP 428
Horowitz, Stanely A., and Angier, Bruce N. Costs and Benefits
of Training and Experience, 18 pp., Jan 1985. (Presented at the
Symposium on Training Effectiveness, NATO Defense
Research Group, Brussels, 7-9 January 1985)

PP 427
Cavalluzzo, Linda C. OpTempo and Training Effectiveness,
19 pp., Dec 1984. (Presented at the Symposium on Training
Effectiveness, NATO Defense Research Group. Brussels,
7-9 January 1985)

PP 428
Matthes, Greg, Cdr.. USN and Evanovich, Peter Force Levels,
Readiness,and Capability, 24 pp., Nov 1984. (Presented at the
ORSA-TIMS 26-28 November Meeting, Washington, D.C.;

PP 429
Perla, Peter P. and Barrett, Raymond T. LCdr., USN,
Wargaming and Its Uses, 13 pp., Nov 1984. (Published in the
Naval War College Review, XXXVIII, No. 5 / Sequence 311,
September-October 1985)

PP 430
Goldberg, Matthew S. The Relationship Between Material
Failures And Flight Hours: Statistical Considerations, 18 pp.,
Jan 1985

PP 431
McConnell, James M. A Possible Change in Souvtet Views on the
Prospects for Anti-Submarine Warfare, 19 pp..Jan 1985

PP 432
Marcus, AlanJ. and Curran, Lawrence E., Cdr., USN. The Use
of Flight Simulators in Measuring and Improving Training
Effectiveness, 29 pp.. Jan 1985 (Presented at the Symposium
on Training Effectiveness, NATO Defense Research Group,
Brussels, 7-9 January 1935)

PP 433
Quester, Aline 0. and Lockman, Robert F. The All Volunteer
Force: Qutlook for the Eighties and Nineties, 20 pp., Mar 1984.
(To be published in Armed Forces and Soctety, 1985}

PP 435
Levine, Daniel B. and Jondrow, James M. Readiness or
Resources: Which Comes First? 12 pp., Mar 1985

PP 4368
Goldberg, Matthew S. Logit Specification Tests Using
Grouped Data, 26 pp.,Jan 1985

1. CNA Professional Papers with an AD number may be obtained from the National Technical Information Service, U S. Department
of Commerce, Springfield, Virginia 22151. Other papers are available from the Management Information Office, Center for Naval
Analyses, 4401 Ford Avenue, Alexandria, Virginia 22302-0268. An index of selected publications is also available on request. The
index includes a listing of professional papers, with abstracts, issued from 1969 to December 1983).

2. Listings for Professional Papers issued prior to PP 407 can be found in Index of Selected Publications 1 through December 1983),

March 1984,

NS A A L n e T TR L N N e R e e




TR g

CNA PROFESSIONAL PAPER INDEX (Continued)

PP 438
Fletcher, Jean W. Supply Problems in the Naval Reserve,
14 pp., Feb 1986. (Presented at the Third Annual Mobilization
Conference, Industrial College of the Armed Forces, National
Defense University)

PP 440
Bell, Jr., Thomas D. The Center for Naval Analyses Past,
Present,and Future, 12 pp., Aug 1985

PP 441
Schneiter, George R. Implications of the Strategic Defense
Initiative for the ABM Treaty, 13 pp., Feb 1986. (Published in
Survival,September/October 1985)

PP 442
Berg, Robert, Dennis, Richard, and Jondrow, James. Price
Analysis and the Effects of Competition, 23 pp., Sep 1985.
(Presented at the Association for Public Policy Analysis and
Management — The Annual Research Conference, Shoreham
Hotel, Washington, D.C., 25 October 1985)

PP 143
FitzGerald, Mary C., Marshal Ogarkov on Modern War:
1977-1985, 65 pp., Mar 1986

PP 145
Kober, Stanley, Strategic Defense, Deterrence, and Arms
Control, 23 pp., Aug 1986. (Published in The Washington
Quarterly, Winter 1986)

PP 446

Mayberry, Paul W. and Maier, Milton H., Towards -Justifying
Enligtment Standards: Linking Input Characteristics to Job
Performance, 11 pp., Oct 1986. (Paper to be presented at 1986
American Psychological Association symposium entitled "Setting
Standards in Performance Measurement”.)

\f\- ~V‘ ""' o
L) () * - ¥ -

< o
n _*"

A A A S R

PP 448
Cymrot, Donald J., Military Retiremnt and Social Security: A
Comparative Analysis, 28 pp.,Oct 1986

PP 449
Richardson, Henry R., Search Theory,13 pp., Apr 1986

PP 450
Perla, Peter P., Design, Development, and Play of Navy War-
games, 32 pp., Mar 1987

PP 451
FitzGerald, Mary C., The Soviet Leadership on Nuclear War,
40 pp., Apr 1987

PP 452

Mayberry, Paul W., Issues in the Development of a Competency
Scale: Implications for Linking Job Performance and Aptitude,
22 pp.,Apr 1987

PP 453
Dismukes, Bradford, Strategic ASW And The Conventional
Defense Of Europe, 26 pp., Apr 1987

PP 454
Maier, Milton, Marine Corps Project To Validate The ASVAB
AgainstJob Performance, 14 pp., May 1987

PP 453
Bennett, Allan, Continuous Dependence on Modeling in the

Cauchy Problem for Nonlinear Elliptic Equations, 49 pp.,
Apr 1987

PP 438
Gates, Stephen, Simulation and Analvsis of Flight Deck Opera-
tionsonan LHA, 81 pp. Jun 1987

BTN T T O

I3

v a_e_®

o gF SN BN SR SN 4

»

Py vy



sy 8¢ AR AL
a2 Vur .
. 3

P

T g he_od
B s - W
R ISR
.::l.’ ‘::::".“ 3 ‘ ] - i . 9 - L4
SO NS I"':' ‘ 8 : \ o . ;
W ‘ NN A MR Ay %
: S AR :
e < N X | Y
KA A XN by WL XY Q.. \




